3.132 \(\int \frac{\sqrt{c+d \tan (e+f x)} (A+B \tan (e+f x)+C \tan ^2(e+f x))}{(a+b \tan (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=300 \[ -\frac{2 \left (A b^2-a (b B-a C)\right ) \sqrt{c+d \tan (e+f x)}}{b f \left (a^2+b^2\right ) \sqrt{a+b \tan (e+f x)}}-\frac{\sqrt{c-i d} (i A+B-i C) \tanh ^{-1}\left (\frac{\sqrt{c-i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a-i b} \sqrt{c+d \tan (e+f x)}}\right )}{f (a-i b)^{3/2}}-\frac{\sqrt{c+i d} (B-i (A-C)) \tanh ^{-1}\left (\frac{\sqrt{c+i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a+i b} \sqrt{c+d \tan (e+f x)}}\right )}{f (a+i b)^{3/2}}+\frac{2 C \sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b \tan (e+f x)}}{\sqrt{b} \sqrt{c+d \tan (e+f x)}}\right )}{b^{3/2} f} \]

[Out]

-(((I*A + B - I*C)*Sqrt[c - I*d]*ArcTanh[(Sqrt[c - I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a - I*b]*Sqrt[c + d*Ta
n[e + f*x]])])/((a - I*b)^(3/2)*f)) - ((B - I*(A - C))*Sqrt[c + I*d]*ArcTanh[(Sqrt[c + I*d]*Sqrt[a + b*Tan[e +
 f*x]])/(Sqrt[a + I*b]*Sqrt[c + d*Tan[e + f*x]])])/((a + I*b)^(3/2)*f) + (2*C*Sqrt[d]*ArcTanh[(Sqrt[d]*Sqrt[a
+ b*Tan[e + f*x]])/(Sqrt[b]*Sqrt[c + d*Tan[e + f*x]])])/(b^(3/2)*f) - (2*(A*b^2 - a*(b*B - a*C))*Sqrt[c + d*Ta
n[e + f*x]])/(b*(a^2 + b^2)*f*Sqrt[a + b*Tan[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 3.79592, antiderivative size = 300, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 8, integrand size = 49, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.163, Rules used = {3645, 3655, 6725, 63, 217, 206, 93, 208} \[ -\frac{2 \left (A b^2-a (b B-a C)\right ) \sqrt{c+d \tan (e+f x)}}{b f \left (a^2+b^2\right ) \sqrt{a+b \tan (e+f x)}}-\frac{\sqrt{c-i d} (i A+B-i C) \tanh ^{-1}\left (\frac{\sqrt{c-i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a-i b} \sqrt{c+d \tan (e+f x)}}\right )}{f (a-i b)^{3/2}}-\frac{\sqrt{c+i d} (B-i (A-C)) \tanh ^{-1}\left (\frac{\sqrt{c+i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a+i b} \sqrt{c+d \tan (e+f x)}}\right )}{f (a+i b)^{3/2}}+\frac{2 C \sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b \tan (e+f x)}}{\sqrt{b} \sqrt{c+d \tan (e+f x)}}\right )}{b^{3/2} f} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[c + d*Tan[e + f*x]]*(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2))/(a + b*Tan[e + f*x])^(3/2),x]

[Out]

-(((I*A + B - I*C)*Sqrt[c - I*d]*ArcTanh[(Sqrt[c - I*d]*Sqrt[a + b*Tan[e + f*x]])/(Sqrt[a - I*b]*Sqrt[c + d*Ta
n[e + f*x]])])/((a - I*b)^(3/2)*f)) - ((B - I*(A - C))*Sqrt[c + I*d]*ArcTanh[(Sqrt[c + I*d]*Sqrt[a + b*Tan[e +
 f*x]])/(Sqrt[a + I*b]*Sqrt[c + d*Tan[e + f*x]])])/((a + I*b)^(3/2)*f) + (2*C*Sqrt[d]*ArcTanh[(Sqrt[d]*Sqrt[a
+ b*Tan[e + f*x]])/(Sqrt[b]*Sqrt[c + d*Tan[e + f*x]])])/(b^(3/2)*f) - (2*(A*b^2 - a*(b*B - a*C))*Sqrt[c + d*Ta
n[e + f*x]])/(b*(a^2 + b^2)*f*Sqrt[a + b*Tan[e + f*x]])

Rule 3645

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[((A*d^2 + c*(c*C - B*d))*(a + b*T
an[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 + d^2)), x] - Dist[1/(d*(n + 1)*(c^2 + d^2)), I
nt[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*d*(b*d*m - a*c*(n + 1)) + (c*C - B*d)*(b*c
*m + a*d*(n + 1)) - d*(n + 1)*((A - C)*(b*c - a*d) + B*(a*c + b*d))*Tan[e + f*x] - b*(d*(B*c - A*d)*(m + n + 1
) - C*(c^2*m - d^2*(n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c -
a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3655

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x
]}, Dist[ff/f, Subst[Int[((a + b*ff*x)^m*(c + d*ff*x)^n*(A + B*ff*x + C*ff^2*x^2))/(1 + ff^2*x^2), x], x, Tan[
e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] &&
NeQ[c^2 + d^2, 0]

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{c+d \tan (e+f x)} \left (A+B \tan (e+f x)+C \tan ^2(e+f x)\right )}{(a+b \tan (e+f x))^{3/2}} \, dx &=-\frac{2 \left (A b^2-a (b B-a C)\right ) \sqrt{c+d \tan (e+f x)}}{b \left (a^2+b^2\right ) f \sqrt{a+b \tan (e+f x)}}+\frac{2 \int \frac{\frac{1}{2} ((b B-a C) (b c-a d)+A b (a c+b d))-\frac{1}{2} b ((A-C) (b c-a d)-B (a c+b d)) \tan (e+f x)+\frac{1}{2} \left (a^2+b^2\right ) C d \tan ^2(e+f x)}{\sqrt{a+b \tan (e+f x)} \sqrt{c+d \tan (e+f x)}} \, dx}{b \left (a^2+b^2\right )}\\ &=-\frac{2 \left (A b^2-a (b B-a C)\right ) \sqrt{c+d \tan (e+f x)}}{b \left (a^2+b^2\right ) f \sqrt{a+b \tan (e+f x)}}+\frac{2 \operatorname{Subst}\left (\int \frac{\frac{1}{2} ((b B-a C) (b c-a d)+A b (a c+b d))-\frac{1}{2} b ((A-C) (b c-a d)-B (a c+b d)) x+\frac{1}{2} \left (a^2+b^2\right ) C d x^2}{\sqrt{a+b x} \sqrt{c+d x} \left (1+x^2\right )} \, dx,x,\tan (e+f x)\right )}{b \left (a^2+b^2\right ) f}\\ &=-\frac{2 \left (A b^2-a (b B-a C)\right ) \sqrt{c+d \tan (e+f x)}}{b \left (a^2+b^2\right ) f \sqrt{a+b \tan (e+f x)}}+\frac{2 \operatorname{Subst}\left (\int \left (\frac{\left (a^2+b^2\right ) C d}{2 \sqrt{a+b x} \sqrt{c+d x}}+\frac{b (b B c+b (A-C) d+a (A c-c C-B d))-b (A b c-a B c-b c C-a A d-b B d+a C d) x}{2 \sqrt{a+b x} \sqrt{c+d x} \left (1+x^2\right )}\right ) \, dx,x,\tan (e+f x)\right )}{b \left (a^2+b^2\right ) f}\\ &=-\frac{2 \left (A b^2-a (b B-a C)\right ) \sqrt{c+d \tan (e+f x)}}{b \left (a^2+b^2\right ) f \sqrt{a+b \tan (e+f x)}}+\frac{\operatorname{Subst}\left (\int \frac{b (b B c+b (A-C) d+a (A c-c C-B d))-b (A b c-a B c-b c C-a A d-b B d+a C d) x}{\sqrt{a+b x} \sqrt{c+d x} \left (1+x^2\right )} \, dx,x,\tan (e+f x)\right )}{b \left (a^2+b^2\right ) f}+\frac{(C d) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x} \sqrt{c+d x}} \, dx,x,\tan (e+f x)\right )}{b f}\\ &=-\frac{2 \left (A b^2-a (b B-a C)\right ) \sqrt{c+d \tan (e+f x)}}{b \left (a^2+b^2\right ) f \sqrt{a+b \tan (e+f x)}}+\frac{\operatorname{Subst}\left (\int \left (\frac{b (A b c-a B c-b c C-a A d-b B d+a C d)+i b (b B c+b (A-C) d+a (A c-c C-B d))}{2 (i-x) \sqrt{a+b x} \sqrt{c+d x}}+\frac{-b (A b c-a B c-b c C-a A d-b B d+a C d)+i b (b B c+b (A-C) d+a (A c-c C-B d))}{2 (i+x) \sqrt{a+b x} \sqrt{c+d x}}\right ) \, dx,x,\tan (e+f x)\right )}{b \left (a^2+b^2\right ) f}+\frac{(2 C d) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c-\frac{a d}{b}+\frac{d x^2}{b}}} \, dx,x,\sqrt{a+b \tan (e+f x)}\right )}{b^2 f}\\ &=-\frac{2 \left (A b^2-a (b B-a C)\right ) \sqrt{c+d \tan (e+f x)}}{b \left (a^2+b^2\right ) f \sqrt{a+b \tan (e+f x)}}+\frac{((i a+b) (A+i B-C) (c+i d)) \operatorname{Subst}\left (\int \frac{1}{(i-x) \sqrt{a+b x} \sqrt{c+d x}} \, dx,x,\tan (e+f x)\right )}{2 \left (a^2+b^2\right ) f}+\frac{(2 C d) \operatorname{Subst}\left (\int \frac{1}{1-\frac{d x^2}{b}} \, dx,x,\frac{\sqrt{a+b \tan (e+f x)}}{\sqrt{c+d \tan (e+f x)}}\right )}{b^2 f}+\frac{((A-i B-C) (i c+d)) \operatorname{Subst}\left (\int \frac{1}{(i+x) \sqrt{a+b x} \sqrt{c+d x}} \, dx,x,\tan (e+f x)\right )}{2 (a-i b) f}\\ &=\frac{2 C \sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b \tan (e+f x)}}{\sqrt{b} \sqrt{c+d \tan (e+f x)}}\right )}{b^{3/2} f}-\frac{2 \left (A b^2-a (b B-a C)\right ) \sqrt{c+d \tan (e+f x)}}{b \left (a^2+b^2\right ) f \sqrt{a+b \tan (e+f x)}}+\frac{((i a+b) (A+i B-C) (c+i d)) \operatorname{Subst}\left (\int \frac{1}{a+i b-(c+i d) x^2} \, dx,x,\frac{\sqrt{a+b \tan (e+f x)}}{\sqrt{c+d \tan (e+f x)}}\right )}{\left (a^2+b^2\right ) f}+\frac{((A-i B-C) (i c+d)) \operatorname{Subst}\left (\int \frac{1}{-a+i b-(-c+i d) x^2} \, dx,x,\frac{\sqrt{a+b \tan (e+f x)}}{\sqrt{c+d \tan (e+f x)}}\right )}{(a-i b) f}\\ &=-\frac{(i A+B-i C) \sqrt{c-i d} \tanh ^{-1}\left (\frac{\sqrt{c-i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a-i b} \sqrt{c+d \tan (e+f x)}}\right )}{(a-i b)^{3/2} f}-\frac{(B-i (A-C)) \sqrt{c+i d} \tanh ^{-1}\left (\frac{\sqrt{c+i d} \sqrt{a+b \tan (e+f x)}}{\sqrt{a+i b} \sqrt{c+d \tan (e+f x)}}\right )}{(a+i b)^{3/2} f}+\frac{2 C \sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b \tan (e+f x)}}{\sqrt{b} \sqrt{c+d \tan (e+f x)}}\right )}{b^{3/2} f}-\frac{2 \left (A b^2-a (b B-a C)\right ) \sqrt{c+d \tan (e+f x)}}{b \left (a^2+b^2\right ) f \sqrt{a+b \tan (e+f x)}}\\ \end{align*}

Mathematica [C]  time = 35.7252, size = 621058, normalized size = 2070.19 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sqrt[c + d*Tan[e + f*x]]*(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2))/(a + b*Tan[e + f*x])^(3/2),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [F]  time = 180., size = 0, normalized size = 0. \begin{align*} \int{(A+B\tan \left ( fx+e \right ) +C \left ( \tan \left ( fx+e \right ) \right ) ^{2})\sqrt{c+d\tan \left ( fx+e \right ) } \left ( a+b\tan \left ( fx+e \right ) \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c+d*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(a+b*tan(f*x+e))^(3/2),x)

[Out]

int((c+d*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(a+b*tan(f*x+e))^(3/2),x)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(a+b*tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(a+b*tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c + d \tan{\left (e + f x \right )}} \left (A + B \tan{\left (e + f x \right )} + C \tan ^{2}{\left (e + f x \right )}\right )}{\left (a + b \tan{\left (e + f x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))**(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)**2)/(a+b*tan(f*x+e))**(3/2),x)

[Out]

Integral(sqrt(c + d*tan(e + f*x))*(A + B*tan(e + f*x) + C*tan(e + f*x)**2)/(a + b*tan(e + f*x))**(3/2), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*tan(f*x+e))^(1/2)*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(a+b*tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError